Cart (Loading....) | Create Account
Close category search window
 

Dynamic Voltage Scaling in Multitier Web Servers with End-to-End Delay Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Horvath, T. ; Dept. of Comput. Sci., Virginia Univ., Charlottesville, VA ; Abdelzaher, T. ; Skadron, K. ; Xue Liu

The energy and cooling costs of Web server farms are among their main financial expenditures. This paper explores the benefits of dynamic voltage scaling (DVS) for power management in server farms. Unlike previous work, which addressed DVS on individual servers and on load-balanced server replicas, this paper addresses DVS in multistage service pipelines. Contemporary Web server installations typically adopt a three-tier architecture in which the first tier presents a Web interface, the second executes scripts that implement business logic, and the third serves database accesses. From a user's perspective, only the end-to-end response across the entire pipeline is relevant. This paper presents a rigorous optimization methodology and an algorithm for minimizing the total energy expenditure of the multistage pipeline subject to soft end-to-end response-time constraints. A distributed power management service is designed and evaluated on a real three-tier server prototype for coordinating DVS settings in a way that minimizes global energy consumption while meeting end-to-end delay constraints. The service is shown to consume as much as 30 percent less energy compared to the default (Linux) energy saving policy

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.