By Topic

An Operation-Centered Approach to Fault Detection in Symmetric Cryptography Ciphers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Breveglieri, L. ; Dept. of Electron. & Inf. Technol., Politecnico di Milano, Milan ; Koren, I. ; Maistri, P.

One of the most effective ways of attacking a cryptographic device is by deliberate fault injection during computation, which allows retrieving the secret key with a small number of attempts. Several attacks on symmetric and public-key cryptosystems have been described in the literature and some dedicated error-detection techniques have been proposed to foil them. The proposed techniques are ad hoc ones and exploit specific properties of the cryptographic algorithms. In this paper, we propose a general framework for error detection in symmetric ciphers based on an operation-centered approach. We first enumerate the arithmetic and logic operations included in the cipher and analyze the efficacy and hardware complexity of several error-detecting codes for each such operation. We then recommend an error-detecting code for the cipher as a whole based on the operations it employs. We also deal with the trade-off between the frequency of checking for errors and the error coverage. We demonstrate our framework on a representative group of 11 symmetric ciphers. Our conclusions are supported by both analytical proofs and extensive simulation experiments

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 5 )