Cart (Loading....) | Create Account
Close category search window

Design of Class E Amplifier With Nonlinear and Linear Shunt Capacitances for Any Duty Cycle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mediano, A. ; Dept. of Electron. Eng. & Commun., Zaragoza Univ. ; Molina-Gaudo, P. ; Bernal, C.

One of the main advantages of class E amplifiers for RF and microwave applications relies on the inclusion of a shunt capacitance in the tuned output network. At high frequencies, this capacitance is mainly provided by the output parasitic capacitance of the device with perhaps a linear external one for fine adjustments. The device's output capacitance is nonlinear and this influences the design parameters, frequency limit of operation, and performance of the class E amplifier. This paper presents a design method for the class E amplifier with shunt capacitance combining a nonlinear and linear one for any duty cycle, any capacitance's nonlinear dependence parameters, and any loaded quality factor of the tuned network. Nonlinear design with possibly different duty cycles is of relevance to maximize power or, alternatively, frequency utilization of a given device. Experimental, simulated, and compared results are presented to prove this design procedure

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.