By Topic

A High-Performance CMOS Voltage-Controlled Oscillator for Ultra-Low-Voltage Operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsieh-Hung Hsieh ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Liang-Hung Lu

In this paper, a novel circuit topology of voltage-controlled oscillators (VCOs) suitable for ultra-low-voltage operations is presented. By utilizing the capacitive feedback and the forward-body-bias (FBB) technique, the proposed VCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of phase noise, tuning range, and output swing. Using a standard 0.18-mum CMOS process, a 5.6-GHz VCO is designed and fabricated for demonstration. Consuming a dc power of 3 mW from a 0.6-V supply voltage, the VCO exhibits a frequency tuning range of 8.1% and a phase noise of -118 dBc/Hz at 1-MHz offset frequency. With an FBB for the cross-coupled transistors, the fabricated circuit can operate at a supply voltage as low as 0.4 V. The measured tuning range and phase noise are 6.4% and -114 dBc/Hz, respectively

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:55 ,  Issue: 3 )
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal