Cart (Loading....) | Create Account
Close category search window
 

The Direct Detection Effect in the Hot-Electron Bolometer Mixer Sensitivity Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cherednichenko, S. ; Dept. of Microtechnol. & Nanosci., Chalmers Univ. of Technol., Goteborg ; Drakinskiy, V. ; Berg, Therese ; Kollberg, E.L.
more authors

We investigate an error in the noise temperature measurements of the hot-electron bolometer mixers caused by the so-called "direct detection effect". The effect originates in the changing of the mixer parameters when the mixer is loaded on calibration black body sources at different temperatures (300 and 77 K). A correction factor was obtained from the mixer output power versus the bias current dependence, measured by: 1) the local oscillator (LO) power tuning: 2) mixer heating: and 3) application of an external RF source. Furthermore, the direct detection effect was assessed by elimination of the heterodyne response using a LO frequency, which is far off the mixer RF band. We show that the direct detection effect can be mitigated by using an isolator between the mixer and the IF amplifier

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.