By Topic

Cascaded Two-Wavelength Lasers and Their Effects on C-Band Amplification Performance for Er3+-Doped Fluoride Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guanshi Qin ; Future-Ind. Orient Basic Sci. & Mater. Dept., Toyota Technol. Inst., Nagoya ; Ohishi, Y.

In this paper, we report cascaded two-wavelength 853-nm (4 S3/2rarr4I13/2 transition) and 1533-nm (4I13/2rarr4I15/2 transition) lasing from Er3+-doped fluoride fiber pumped at 974 nm. The cavity for cascaded two-wavelength lasing is composed of two fiber ends with 4% Fresnel reflection. Its optical-to-optical efficiency is up to 26.6%. Its effects on C-band fiber amplifiers and green upconversion fiber lasers are discussed. A new way to get high efficiency and low noise C-band amplifier is suggested, i.e., a fluoride-based Er3+-doped fiber amplifier including 853-nm lasing cavity. Our simulated results show that such a new amplifier can enhance the signal gain greatly and break the limit of the saturated gain intensity for a normal amplifier

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 4 )