By Topic

Three-Level Z-Source Inverters Using a Single LC Impedance Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poh Chiang Loh ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ. ; Sok Wei Lim ; Feng Gao ; Blaabjerg, F.

Three-level Z-source inverters are recent single-stage topological solutions proposed for buck-boost energy conversion with all favorable advantages of three-level switching retained. Despite their effectiveness in achieving voltage buck-boost conversion, existing three-level Z-source inverters use two LC impedance networks and two isolated dc sources, which can significantly increase the overall system cost and require a more complex modulator for balancing the network inductive voltage boosting. Offering a number of less costly alternatives, this letter presents the design and control of two three-level Z-source inverters, whose output voltage can be stepped down or up using only a single LC impedance network connected between the dc input source and either a neutral-point-clamped (NPC) or dc-link cascaded inverter circuitry. Through careful design of their modulation scheme, both inverters can function with the minimum of six device commutations per half carrier cycle (similar to that needed by a traditional buck three-level NPC inverter), while producing the correct volt-sec average and inductive voltage boosting at their ac output terminals. Physically, the designed modulation scheme can conveniently be implemented using a generic "alternative phase opposition disposition" carrier-based modulator with the appropriate triplen offset and time advance/delay added. The designed inverters, having a reduced passive component count, are lastly tested in simulation and experimentally using a laboratory prototype with the captured results presented in a later section of the letter

Published in:

Power Electronics, IEEE Transactions on  (Volume:22 ,  Issue: 2 )