By Topic

Self-Organizing and Self-Evolving Neurons: A New Neural Network for Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sitao Wu ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon ; Chow, T.W.S.

A self-organizing and self-evolving agents (SOSENs) neural network is proposed. Each neuron of the SOSENs evolves itself with a simulated annealing (SA) algorithm. The self-evolving behavior of each neuron is a local improvement that results in speeding up the convergence. The chance of reaching the global optimum is increased because multiple SAs are run in a searching space. Optimum results obtained by the SOSENs are better in average than those obtained by a single SA. Experimental results show that the SOSENs have less temperature changes than the SA to reach the global minimum. Every neuron exhibits a self-organizing behavior, which is similar to those of the self-organizing map (SOM), particle swarm optimization (PSO), and self-organizing migrating algorithm (SOMA). At last, the computational time of parallel SOSENs can be less than the SA

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 2 )