By Topic

Anticipation-Based Temporal Sequences Learning in Hierarchical Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Starzyk, J.A. ; Sch. of Electr. Eng. & Comput. Sci, Ohio Univ., Athens, OH ; Haibo He

Temporal sequence learning is one of the most critical components for human intelligence. In this paper, a novel hierarchical structure for complex temporal sequence learning is proposed. Hierarchical organization, a prediction mechanism, and one-shot learning characterize the model. In the lowest level of the hierarchy, we use a modified Hebbian learning mechanism for pattern recognition. Our model employs both active 0 and active 1 sensory inputs. A winner-take-all (WTA) mechanism is used to select active neurons that become the input for sequence learning at higher hierarchical levels. Prediction is an essential element of our temporal sequence learning model. By correct prediction, the machine indicates it knows the current sequence and does not require additional learning. When the prediction is incorrect, one-shot learning is executed and the machine learns the new input sequence as soon as the sequence is completed. A four-level hierarchical structure that isolates letters, words, sentences, and strophes is used in this paper to illustrate the model

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 2 )