By Topic

Sensor Integration for Satellite-Based Vehicular Navigation Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rashad Sharaf ; Dept. of Electr. & Comput. Eng., R. Mil. Coll. of Canada, Kingston, Ont. ; Aboelmagd Noureldin

Land vehicles rely mainly on global positioning system (GPS) to provide their position with consistent accuracy. However, GPS receivers may encounter frequent GPS outages within urban areas where satellite signals are blocked. In order to overcome this problem, GPS is usually combined with inertial sensors mounted inside the vehicle to obtain a reliable navigation solution, especially during GPS outages. This letter proposes a data fusion technique based on radial basis function neural network (RBFNN) that integrates GPS with inertial sensors in real time. A field test data was used to examine the performance of the proposed data fusion module and the results discuss the merits and the limitations of the proposed technique

Published in:

IEEE Transactions on Neural Networks  (Volume:18 ,  Issue: 2 )