By Topic

Global Reinforcement Learning in Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaolong Ma ; Stony Brook Univ., NY ; Likharev, K.K.

In this letter, we have found a more general formulation of the REward Increment = Nonnegative Factor times Offset Reinforcement times Characteristic Eligibility (REINFORCE) learning principle first suggested by Williams. The new formulation has enabled us to apply the principle to global reinforcement learning in networks with various sources of randomness, and to suggest several simple local rules for such networks. Numerical simulations have shown that for simple classification and reinforcement learning tasks, at least one family of the new learning rules gives results comparable to those provided by the famous Rules Ar-i and Ar-p for the Boltzmann machines

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 2 )