By Topic

Measurement of the tungsten ion concentration after forced extinction of a vacuum arc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. Lins ; Forschungslaboratorien der Siemens AG, Erlangen, West Germany

The concentrations of singly ionized and neutral tungsten atoms were measured by laser-induced fluorescence after the forced extinction of vacuum arcs between tungsten-copper butt contacts, 28-mm in diam. and 10-mm apart. The 50-Hz current was forced to zero at its maximum of 200 A in 1.3 μs by application of a reverse voltage. Near current zero, the ion concentration of 4×1017 m-3 is of the same order of magnitude as the atomic tungsten concentration, which is 6×1017 m-3. While the concentration of the neutrals remains virtually constant during 20 μs after current zero, the ion concentration decays by three orders of magnitude in the same time. The decay-time constant varies from 1.9 μs close to the postarc cathode to 3.6 μs near the postarc anode. It is concluded that the dielectric recovery of vacuum gaps after diffuse arcs is mainly controlled by residual charge carriers

Published in:

IEEE Transactions on Plasma Science  (Volume:17 ,  Issue: 5 )