By Topic

A model for a uniform steady-state vacuum arc with a hot anode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boxman, R.L. ; Electr. Discharge & Plasma Lab., Tel Aviv Univ., Israel ; Goldsmith, S.

A model is formulated and evaluated for a Uniform electrical discharge sustained in vapor evaporated from an arc-heated anode. The plasma potential is positive with respect to both the cathode and anode. For a Cu anode, the anodic vapor dominates the plasma for current densities exceeding 8 kA/m2. The anode heating potential is approximately 6.5 V, and the dominant cooling mechanism is evaporation for current densities exceeding 20 kA/m2. Over the range 10 to 10000 kA/m2, the electron density increases from 8×1017 to 5×1023 m-3, while the ionization fraction rises from 0.3% to 4%. At the lower end of this current range the electrical resistivity of 4 mΩ-m is determined primarily by electron-neutral collisions, while with increasing current the resistivity decreases to 0.7 mΩ-m, with electron-ion collisions contributing an equal share. This hot-anode vacuum arc may have potential for industrial application as a macroparticle-free high-deposition-rate coating source

Published in:

Plasma Science, IEEE Transactions on  (Volume:17 ,  Issue: 5 )