Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Optical gain of 1.3 μm GaAsSbN/GaAs quantum well lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Park, S.-H. ; Dept. of Electron. Eng., Catholic Univ. of Daegu, Kyeongbuk

Optical gain of 1.3 mum GaAsSbN/GaAs quantum well (QW) structure is investigated using the multiband effective mass theory. The results are compared with those of 1.3 mum InGaNAs/GaAs and GaAsSb/GaAs QW structures. The optical gain of the GaAsSbN/GaAs QW structure is found to be similar to that of the InGaAsN/GaAs QW structure. In contrast, GaAsSbN/GaAs and InGaNAs/GaAs QW structures show significantly larger optical gain than the GaAsSb/GaAs QW structure. This is mainly attributed to the fact that the former has a larger optical matrix element than the latter. In addition, GaAsSbN/GaAs and InGaNAs/GaAs QW structures have much smaller threshold current density than the GaAsSb/GaAs QW structure. This is because the Auger recombination current density gives dominant contribution to the threshold current density and the former has smaller threshold carrier density than the latter. On the contrary, the threshold current density of the GaAsSbN/GaAs QW structure is shown to be similar to that of the InGaAsN/GaAs QW structure

Published in:

Optoelectronics, IET  (Volume:1 ,  Issue: 1 )