Cart (Loading....) | Create Account
Close category search window

Extremal solutions of inequations over lattices with applications to supervisory control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, R. ; Dept. of Electr. Eng., Kentucky Univ., Lexington, KY, USA ; Garg, V.K.

We study the existence and computation of extremal solutions of a system of inequations defined over lattices. Using the Knaster-Tarski fixed point theorem, we obtain sufficient conditions for the existence of supremal as well as infimal solution of a given system of inequations. Iterative techniques are presented for the computation of the extremal solutions whenever they exist, and conditions under which the termination occurs in a single iteration are provided. These results are then applied for obtaining extremal solutions of various inequations that arise in computation of maximally permissive supervisors in control of logical discrete event systems (DESs). Thus our work presents a unifying approach for computation of supervisors in a variety of situations

Published in:

Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on  (Volume:4 )

Date of Conference:

14-16 Dec 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.