By Topic

Rearrangeable Nonblocking 8 × 8 Matrix Optical Switch Based on Silica Waveguide and Extended Banyan Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Based on the crossbar network and the Banyan network (BN), a new rearrangeable nonblocking structure of extended Banyan network (EBN) was proposed for implementing an 8 times 8 optical matrix switch. The interconnection characteristics of the rearrangeable nonblocking EBN were studied, and the diagram of the logic program for driving the operation of switching units was provided. A silica waveguide 8 times 8 matrix optical switch was designed and fabricated according to the calculated results. The silica waveguide propagation loss of 0.1 dB/cm and waveguide-fiber coupling loss of 0.5 dB/facet were measured. With the fabricated 8 times 8 matrix optical switch, the insertion loss of 4.6 dB, the crosstalk of -38 dB, the polarization-dependent loss of 0.4 dB, the averaged switching power of 1.6 W, and the switching time of 1 ms were achieved. A basic agreement between experimental results and theoretical calculated values was achieved

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 6 )