By Topic

Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting Diodes With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shiue-Lung Chen ; Inst. of Microelectron., Nat. Cheng Kung Univ., Tainan ; Shui-Jinn Wang ; Kai-Ming Uang ; Tron-Min Chen
more authors

Through the use of selective nickel (Ni) electroplating, patterned laser liftoff technique, and surface roughing of the top n-GaN epilayer, a novel process for the fabrication of vertical-structured metal-substrate GaN-based light-emitting diodes (VM-LEDs) to avoid difficulties in Ni substrate dicing and improve device yield was proposed and demonstrated. In conjunction with a sidewall passivation with SiO2 and keeping the size of epilayer smaller than that of Ni island, a considerable improvement in yield and device performance were shown. As compared to conventional lateral-structured GaN-based LEDs, VM-LEDs show an increase in light output power about 174% at 350 mA with a significant decrease in forward voltage from 3.5 to 3.17 V

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 6 )