Cart (Loading....) | Create Account
Close category search window
 

Design and Performance of PRAN: A System for Physical Implementation of Ad Hoc Network Routing Protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Saha, A.K. ; Dept. of Comput. Sci., Rice Univ., Houston, TX ; To, K.A. ; PalChaudhuri, S. ; Du, S.
more authors

Simulation and physical implementation are both valuable tools in evaluating ad hoc network routing protocols, but neither alone is sufficient. In this paper, we present the design and performance of PRAN, a new system for the physical implementation of ad hoc network routing protocols that unifies these two types of evaluation methodologies. PRAN (physical realization of ad hoc networks) allows existing simulation models of ad hoc network routing protocols to be used - without modification - to create a physical implementation of the same protocol. We have evaluated the simplicity and portability of our approach across multiple protocols and multiple operating systems through example implementations in PRAN of the DSR and AODV routing protocols in FreeBSD and Linux using the standard existing, unmodified ns-2 simulation model of each. We illustrate the ability of the resulting protocol implementations to handle real, demanding applications by describing a demonstration with this DSR implementation transmitting real-time video streams over a multihop mobile ad hoc network; the demonstration features mobile robots being remotely operated based on the real-time video stream transmitted from the robot over the network. We also present a detailed performance evaluation of PRAN to show the feasibility of our architecture

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.