By Topic

Maximizing Communication Concurrency via Link-Layer Packet Salvaging in Mobile Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chansu Yu ; Dept. of Electr. & Comput. Eng., Cleveland State Univ., OH ; Shin, K.G. ; Song, L.

Carrier-sense medium access control (MAC) protocols such as the IEEE 802.11 distributed coordination function (DCF) avoid collisions by holding up pending packet transmission requests when a carrier signal is observed above a certain threshold. However, this often results in unnecessarily conservative communication, thus making it difficult to maximize the utilization of the spatial spectral resource. This paper shows that a higher aggregate throughput can be achieved by allowing more concurrent communications and adjusting the communication distance on the fly, which needs provisions for the following two areas. On the one hand, carrier sense-based MAC protocols do not allow aggressive communication attempts when they are within the carrier senseable area. On the other hand, the communication distance is generally neither short nor adjustable because multihop routing protocols strive for providing minimum hop paths. This paper proposes a new MAC algorithm, called multiple access with salvation army (MASA), which adopts less sensitive carrier sensing to promote more concurrent communications and adjusts the communication distance adaptively via "packet salvaging" at the MAC layer. Extensive simulation based on the ns-2 has shown MASA to outperform the DCF, particularly in terms of packet delay. We also discuss the implementation of MASA based on the DCF specification

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 4 )