Cart (Loading....) | Create Account
Close category search window
 

Research on Dynamic Load Modeling Using Back Propagation Neural Network for Electric Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin Wang ; Coll. of Electr. & Inf. Eng., Univ. of Sci. Technol., Changsha ; Xinran Li ; Sheng Su ; Xiangyang Xia

It is a well-known fact that load representation can have a significant impact on voltage stability. Accurate load models capturing load behaviors during dynamics are therefore necessary to allow more precise calculations of power system controls and stability limits. Recently artificial neural network (ANN) techniques have been widely used in power system simulation analysis. This paper deals with data recorded during the field experiments in power systems using a kind of multilayer feed forward (MLFP) networks with error back- propagation (BP) algorithm and a kind of aggregate load model with least square identification. The results show that the ANN model with the improved back-propagation learning rule have a satisfactory interpolation and extrapolation ability, and also have the ability to describe the voltage-power non-linear relationship of load dynamic characteristics.

Published in:

Power System Technology, 2006. PowerCon 2006. International Conference on

Date of Conference:

22-26 Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.