By Topic

A New Uncertain Fault Diagnosis Approach of Power System Based on Markov Chain Monte Carlo Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wei Zhao ; Ph.D. candidate of China Electric Power Research Institute. e-mail: ; Xiaomin Bai ; Jian Ding ; Zhu Fang
more authors

In this paper, a new fault diagnosis approach in large scale power grid based on Bayesian network and MCMC method is proposed for large scale power grid. Tow models of Bayesian network for constructing the Bayesian network of power grid are established. The main idea for Bayesian network approach is to compute the posterior probabilities of the fault nodes of the Bayesian network in MCMC method so that the fault in the power grid can be diagnosed. With the capacity of revealing relationships among data in model mentioned above, this approach highly improves the accuracy of fault diagnosis and is especially suitable for those environments with imperfect and uncertain information. Results of the testing example prove that the approach proposed is correct, effective and has potential for application of real-time fault diagnosis.

Published in:

2006 International Conference on Power System Technology

Date of Conference:

22-26 Oct. 2006