By Topic

An effective technique for simultaneous interconnect channel delay and noise reduction in nanometer VLSI design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moiseev, K. ; Electrical Engineering Dept., Technion, Haifa 32000, Israel. ; Wimer, S. ; Kolodny, A.

Capacitive coupling is the primary source of noise in nanometer technology digital CMOS VLSI circuits. It becomes worse with technology scaling. The interconnect capacitive crosstalk noise can be characterized by two parameters: peak noise voltage, and delay uncertainty. Delay uncertainty optimization can be seen as a subset of interconnect delay optimization. This paper addresses the problem of ordering and sizing parallel wires in a single metal layer within an interconnect channel of a given width, such that cross-capacitances are optimally shared for simultaneous noise and delay minimization. Using an Elmore delay model including cross capacitances for a bundle of wires and well-known crosstalk models, we show that "symmetric hill" wire ordering according to the strength of signal drivers, which is known to optimize channel timing characteristics, can be used also for minimizing channel noise metrics. Examples using state-of-the-art circuits in 65-nanometer technology are analyzed and discussed.

Published in:

Electrical and Electronics Engineers in Israel, 2006 IEEE 24th Convention of

Date of Conference:

Nov. 2006