Cart (Loading....) | Create Account
Close category search window
 

Determination of Power Gating Granularity for FPGA Fabric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rahman, Arifur ; Xilinx Res. Labs, San Jose , CA ; Das, S. ; Tuan, T. ; Trimberger, S.

In this study, we present a design methodology to determine the granularity of power gating for field programmable gate arrays (FPGAs). Fine-grain power gating is more effective than coarse-grain power gating to reduce the active leakage power of unused logic and interconnection resources. However, the area overhead in fine-grain power gating is higher than that of coarse-grain power gating. Based on the placement and routing of benchmark designs in Spartan-3trade-like FPGA, guidelines for determining the granularity of power gating are provided. It is found that programmable resources with low utilization can be power gated more coarsely than the resources with high utilization

Published in:

Custom Integrated Circuits Conference, 2006. CICC '06. IEEE

Date of Conference:

10-13 Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.