By Topic

Fast Predictions of Variance Images for Fan-Beam Transmission Tomography With Quadratic Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yingying Zhang-O'Connor ; Electr. Eng. & Comput. Sci. Dept., Michigan Univ., Ann Arbor, MI ; Jeffrey A. Fessler

Accurate predictions of image variances can be useful for reconstruction algorithm analysis and for the design of regularization methods. Computing the predicted variance at every pixel using matrix-based approximations is impractical. Even most recently adopted methods that are based on local discrete Fourier approximations are impractical since they would require a forward and backprojection and two fast Fourier transform (FFT) calculations for every pixel, particularly for shift-variant systems like fan-beam tomography. This paper describes new "analytical" approaches to predicting the approximate variance maps of 2-D images that are reconstructed by penalized-likelihood estimation with quadratic regularization in fan-beam geometries. The simplest of the proposed analytical approaches requires computation equivalent to one backprojection and some summations, so it is computationally practical even for the data sizes in X-ray computed tomography (CT). Simulation results show that it gives accurate predictions of the variance maps. The parallel-beam geometry is a simple special case of the fan-beam analysis. The analysis is also applicable to 2-D positron emission tomography (PET)

Published in:

IEEE Transactions on Medical Imaging  (Volume:26 ,  Issue: 3 )