Cart (Loading....) | Create Account
Close category search window
 

Field Inhomogeneity Correction Based on Gridding Reconstruction for Magnetic Resonance Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eggers, H. ; Philips Res. Eur., Hamburg ; Knopp, T. ; Potts, D.

Spatial variations of the main field give rise to artifacts in magnetic resonance images if disregarded in reconstruction. With non-Cartesian k-space sampling, they often lead to unacceptable blurring. Data from such acquisitions are usually reconstructed with gridding methods and optionally restored with various correction methods. Both types of methods essentially face the same basic problem of adequately approximating an exponential function to enable an efficient processing with fast Fourier transforms. Nevertheless, they have commonly addressed it differently so far. In the present work, a unified approach is pursued. The principle behind gridding methods is first generalized to nonequispaced sampling in both domains and then applied to field inhomogeneity correction. Three new algorithms, which are compatible with a direct conjugate phase and an iterative algebraic reconstruction, are derived in this way from a straightforward embedding of the data into a higher dimensional space. Their evaluation in simulations and phantom experiments with spiral k-space sampling shows that one of them promises to provide a favorable compromise between fidelity and complexity compared with existing algorithms. Moreover, it allows a simple choice of key parameters involved in approximating an exponential function and a balance between the accuracy of reconstruction and correction

Published in:

Medical Imaging, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.