By Topic

SAMBA-Bus: A High Performance Bus Architecture for System-on-Chips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruibing Lu ; Synopsys Inc., Mountain View, CA ; Aiqun Cao ; Cheng-Kok Koh

A high performance communication architecture, SAMBA-bus, is proposed in this paper. In SAMBA-bus architecture, multiple compatible bus transactions can be performed simultaneously with only a single bus access grant from the bus arbiter. Experimental results show that, compared with a traditional bus architecture, the SAMBA-bus architecture can have up to 3.5 times improvement in the effective bandwidth, and up to 15 times reduction in the average communication latency. In addition, the performance of SAMBA-bus architecture is affected only slightly by arbitration latency, because bus transactions can be performed without waiting for the bus access grant from the arbiter. This feature is desirable in SoC designs with large numbers of modules and long communication delay between modules and the bus arbiter

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )