By Topic

A Test Generation Framework for Quantum Cellular Automata Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, P. ; Dept. of Electr. Eng., Princeton Univ., NJ ; Jha, N.K. ; Lingappan, L.

In this paper, we present a test generation framework for quantum cellular automata (QCA) circuits. QCA is a nanotechnology that has attracted recent significant attention and shows promise as a viable future technology. This work is motivated by the fact that the stuck-at fault test set of a circuit is not guaranteed to detect all defects that can occur in its QCA implementation. We show how to generate additional test vectors to supplement the stuck-at fault test set to guarantee that all simulated defects in the QCA gates get detected. Since nanotechnologies will be dominated by interconnects, we also target bridging faults on QCA interconnects. The efficacy of our framework is established through its application to QCA implementations of MCNC and ISCAS'85 benchmarks that use majority gates as primitives

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )