By Topic

Behavior Measurement, Analysis, and Regime Classification in Car Following

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoliang Ma ; Center for Traffic Simulation Res., R. Inst. of Technol., Stockholm ; Andreasson, I.

This paper first reports a data acquisition method that the authors used in a project on modeling driver behavior for microscopic traffic simulations. An advanced instrumented vehicle was employed to collect driver-behavior data, mainly car-following and lane-changing patterns, on Swedish roads. To eliminate the measurement noise in acquired car-following patterns, the Kalman smoothing algorithm was applied to the state-space model of the physical states (acceleration, speed, and position) of both instrumented and tracked vehicles. The denoised driving patterns were used in the analysis of driver properties in the car-following stage. For further modeling of car-following behavior, we developed and implemented a consolidated fuzzy clustering algorithm to classify different car-following regimes from the preprocessed data. The algorithm considers time continuity of collected driver-behavior patterns and can be more reliably applied in the classification of continuous car-following regimes when the classical fuzzy C-means algorithm gives unclear results

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:8 ,  Issue: 1 )