By Topic

Efficient feedback methods for MIMO channels based on parameterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roh, J.C. ; Texas Instrum. Inc., Sunnyvale, CA ; Rao, B.D.

In this paper, we propose two efficient low-complexity quantization methods for multiple-input multiple-output (MIMO) systems with finite-rate feedback based on proper parameterization of the information to be fed back followed by quantization in the new parameter domain. For a MIMO channel which has multiple orthonormal vectors as channel spatial information, we exploit the geometrical structure of orthonormality while quantizing the spatial information matrix. The parameterization is of two types: one is in terms of a set of unit-norm vectors with different lengths, and the other is in terms of a minimal number of scalar parameters. These parameters are shown to be independent for the i.i.d. flat-fading Rayleigh channel, facilitating efficient quantization. In the first scheme, each of the unit-norm vectors is independently quantized with a finite number of bits using an optimal vector quantization (VQ) technique. Bit allocation is needed between the vectors, and the optimum bit allocation depends on the operating SNR of the system. In the second scheme, the scalar parameters are quantized. In slowly time-varying channels, the scalar parameters are also found to be smoothly changing over time, leading to the development of a simple quantization and feedback method using adaptive delta modulation. The results show that the proposed feedback scheme has a channel tracking feature and achieves a capacity very close to perfect feedback with a reasonable feedback rate

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 1 )