By Topic

The scaled Popov criterion and bounds for the real structured singular value

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. G. Sparks ; Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI, USA ; D. S. Bernstein

A generalization of the multivariable Popov criterion is stated for norm-bounded, block-structured real matrices in the feedback path representing constant real parameter uncertainty for a nominal plant. This criterion is rendered less conservative by including scaling matrices whose structure is determined by the block structure of the uncertainty. The scaled Popov criterion is then used to derive an upper bound for the structured singular value for real parameter uncertainty. This upper bound is then rewritten in the form of a linear matrix inequality to facilitate numerical computation. Several numerical examples are given to illustrate the effect of the scaling matrices

Published in:

Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on  (Volume:3 )

Date of Conference:

14-16 Dec 1994