Cart (Loading....) | Create Account
Close category search window
 

Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchronous Machines Using Finite Elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fouad, F.A. ; Virginia Polytechnic Institute and State University ; Nehl, T.W. ; Demerdash, N.A.

The finite element method is applied to the analysis of electronically operated permanent magnet type synchronous machines. In this class of machines, the armature MMF is a discretely forward stepping one of high harmonic content. The discretely stepping MMF is accounted for by a series of finite element field solutions as the rotor moves throughout one complete cycle of the ac armature current. Because of the discretely forward travelling MMF, a series of finite element grids depicting the rotor at various equally spaced locations, covering its movement during one cycle of the armature current, is required. This is accomplished by means of an automated algorithm for generation of the required finite elemennt grids. This allows one to match any stator grid to any rotor grid for any given displacement between the two grids. This matching is done in the air gap region by fitting it with a suitable row of triangular elements. In addition, a permanent magnet model is developed based upon the magnet geometry and material properties. This method was applied to the analysis of a 15 hp samarium cobalt machine at both rated and no load conditions. The calculated results were in excellent agreement with search coil measurements at both of these operating conditions. These solutions were then used to determine the midgap EMF waveforms. The calculated midgap EMF was in excellent agreement with an oscillogram of the actual EMF in both waveshape and magnitude.

Published in:

Power Apparatus and Systems, IEEE Transactions on  (Volume:PAS-100 ,  Issue: 9 )

Date of Publication:

Sept. 1981

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.