By Topic

A Framework for Statistical Timing Analysis using Non-Linear Delay and Slew Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhardwaj, S. ; Dept. of Electr. Eng., Arizona State Univ. ; Ghanta, P. ; Vrudhula, S.

In this paper, we propose a framework for statistical static timing analysis (SSTA) considering intra-die process variations. Given a cell library, we propose an accurate method to characterize the gate and interconnect delay as well as slew as a function of underlying parameter variations. Using these accurate delay models, we propose a method to perform SSTA based on a quadratic delay and slew model. The method is based on efficient dimensionality reduction technique used for accurate computation of the max of two delay expansions. Our results indicate less than 4% error in the variance of the delay models compared to SPICE Monte Carlo and less than 1% error in the variance of the circuit delay compared to Monte Carlo simulations

Published in:

Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International Conference on

Date of Conference:

5-9 Nov. 2006