By Topic

Precise Identification of the Worst-Case Voltage Drop Conditions in Power Grid Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Evmorfopoulos, N. ; Dept. of Comput. & Commun. Eng., Thessaly Univ., Volos ; Karampatzakis, D. ; Stamoulis, G.

Identifying worst-case voltage drop conditions in every module supplied by the power grid is a crucial problem in modern IC design. In this paper we develop a novel methodology for power grid verification which is based on accurately constructing the space of current variations of the supplied modules and locating its precise points that yield the worst-case voltage drop conditions. The construction of the current space is performed via plain simulation and statistical extrapolation using results from extreme value theory. The method overcomes limitations of past methods which either relied on loosely bounding the worst-case voltage drop, or abstracted the current space in a vague and incomplete set of bound-type constraints. Experimental results verify the potential of the proposed method to identify worst-case conditions and demonstrate the pessimism inherent in previous bound-type approaches

Published in:

Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International Conference on

Date of Conference:

5-9 Nov. 2006