Cart (Loading....) | Create Account
Close category search window
 

Analysis and Modeling of CD Variation for Statistical Static Timing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cline, B. ; Michigan Univ., Ann Arbor, MI ; Chopra, K. ; Blaauw, D. ; Yu Cao

Statistical static timing analysis (SSTA) has become a key method for analyzing the effect of process variation in aggressively scaled CMOS technologies. Much research has focused on the modeling of spatial correlation in SSTA. However, the vast majority of these works used artificially generated process data to test the proposed models. Hence, it is difficult to determine the actual effectiveness of these methods, the conditions under which they are necessary, and whether they lead to a significant increase in accuracy that warrants their increased runtime and complexity. In this paper, we study 5 different correlation models and their associated SSTA methods using 35420 critical dimension (CD) measurements that were extracted from 23 reticles on 5 wafers in a 130nm CMOS process. Based on the measured CD data, we analyze the correlation as a function of distance and generate 5 distinct correlation models, ranging from simple models which incorporate one or two variation components to more complex models that utilize principle component analysis and quad-trees. We then study the accuracy of the different models and compare their SSTA results with the result of running STA directly on the extracted data. We also examine the trade-off between model accuracy and run time, as well as the impact of die size on model accuracy. We show that, especially for small dies (6.6mm times 5.7mm), the simple models provide comparable accuracy to that of the more complex ones, while incurring significantly less runtime and implementation difficulty. The results of this study demonstrate that correlation models for SSTA must be carefully tested on actual process data and must be used judiciously

Published in:

Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International Conference on

Date of Conference:

5-9 Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.