By Topic

Landing system verification based on petri nets and a hybrid approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Villani, E. ; Inst. Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo ; Miyagi, P.E. ; Valette, R.

One of the most important activities of control system design is its verification. Verification ensures that the controlled system will behave as expected under any circumstances it may operate. In this context, the purpose of this paper is to introduce a new method for the verification of aircraft control systems. The focus of this method is on aircraft systems that are characterized as hybrid, i.e., that merge continuous and discrete dynamics. The method proposed is divided into two main parts: the system modeling and the verification of behavioral properties. In the first part, Petri net, differential equation systems, and object oriented concepts are used concurrently in order to model complex hybrid systems. In the second part, the distributed nature of the model is explored in order to decompose a complex verification problem into series of simple local problems. Linear logic is used as a basis of a theorem-proving approach for the verification from the discrete-event point of view. The verification method has been applied to a number of case studies. Among them is the landing system of a military aircraft, which is described in this paper

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:42 ,  Issue: 4 )