By Topic

Automatic target recognition for hyperspectral imagery using high-order statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hsuan Ren ; Center for Space & Remote Sensing Res., National Central Univ., Tao-Yuan ; Qian Du ; Jing Wang ; Chein-I Chang
more authors

Due to recent advances in hyperspectral imaging sensors many subtle unknown signal sources that cannot be resolved by multispectral sensors can be now uncovered for target detection, discrimination, and identification. Because the information about such sources is generally not available, automatic target recognition (ATR) presents a great challenge to hyperspectral image analysts. Many approaches developed for ATR are based on second-order statistics in the past years. This paper investigates ATR techniques using high order statistics. For ATR in hyperspectral imagery, most interesting targets usually occur with low probabilities and small population and they generally cannot be described by second-order statistics. Under such circumstances, using high-order statistics to perform target detection have been shown by experiments in this paper to be more effective than using second order statistics. In order to further address a challenging issue in determining the number of signal sources needed to be detected, a recently developed concept of virtual dimensionality (VD) is used to estimate this number. The experiments demonstrate that using high-order statistics-based techniques in conjunction with the VD to perform ATR are indeed very effective

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:42 ,  Issue: 4 )