We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Evaluation of estimation algorithms part I: incomprehensive measures of performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong Li, X. ; Dept. of Electr. Eng., New Orleans Univ., LA ; Zhanlue Zhao

Practical metrics for performance evaluation of estimation algorithms are discussed. A variety of metrics useful for evaluating various aspects of the performance of an estimation algorithm is introduced and justified. They can be classified in two different ways: 1) absolute error measures (without a reference), relative error measures (with a reference), or frequency counts (of some events), and 2) optimistic (i.e., how good the performance is), pessimistic (i.e., how bad the performance is), or balanced (neither optimistic nor pessimistic). Pros and cons of these metrics and the widely-used RMS error are explained. The paper advocates replacing the RMS error in many cases by a measure called average Euclidean error

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:42 ,  Issue: 4 )