By Topic

On broadcasting with cooperative diversity in multi-hop wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Cooperative diversity facilitates spatio-temporal communications without requiring the deployment of physical antenna arrays. While physical layer studies on cooperative diversity have been extensive, higher layer protocols which translate the achievable reduction in the SNR per bit for a given target BER, into system wide performance enhancements are yet to mature. The challenge is that appropriate higher layer functions are needed in order to enable cooperative diversity at the physical layer. We focus on network-wide broadcasting with the use of cooperative diversity in ad hoc networks. We design a novel distributed network-wide broadcasting protocol that takes into account the physical layer dependencies that arise with cooperative diversity. We perform extensive simulations that show that our protocol can outperform the best of the noncooperative broadcasting protocols by: (a) achieving up to a threefold increase in network coverage and, (b) by decreasing the latency incurred during the broadcast by about 50%. We also construct an analytical model that captures the behavior of our protocol. Furthermore, we show that computing the optimal solution to the cooperative broadcast problem is NP-complete and construct centralized approximation algorithms. Specifically, we construct an O(N epsi)-approximation algorithm with a computational complexity of O(N4/epsi); we also construct a simpler greedy algorithm.. The costs incurred with these algorithms serve as benchmarks with which one can compare that achieved by any distributed protocol

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 2 )