By Topic

Energy efficiency of dense wireless sensor networks: to cooperate or not to cooperate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Quek, T.Q.S. ; Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA ; Dardari, D. ; Win, M.Z.

Decentralized detection in a network of wireless sensor nodes involves the fusion of information about a phenomenon of interest (PoI) from geographically dispersed nodes. In this paper, we investigate the problem of binary decentralized detection in a dense and randomly deployed wireless sensor network (WSN), whereby the communication channels between the nodes and the fusion center are bandwidth-constrained. We consider a scenario in which sensor observations, conditioned on the alternate hypothesis, are independent but not identically distributed across the sensor nodes. We compare two different fusion architectures, namely, the parallel fusion architecture (PFA) and the cooperative fusion architecture (CFA), for such bandwidth-constrained WSNs, where each sensor node is restricted to send a I-bit information to the fusion center. For each architecture, we derive expression for the probability of decision error at the fusion center. We propose a consensus flooding protocol for CFA and analyze its average energy consumption. We analyze the effects of PoI intensity, realistic link models, consensus flooding protocol, and network connectivity on the system reliability and average energy consumption for both fusion architectures. We demonstrate that a trade-off exists among spatial diversity gain, average energy consumption, delivery ratio of the consensus flooding protocol, network connectivity, node density, and Poll intensity in CFA. We then provide insight into the design of cooperative WSNs.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 2 )