By Topic

Partially-coherent distributed space-time codes with differential encoder and decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kiran, T. ; Electr. Commun. Eng. Dept., Indian Inst. of Sci., Bangalore ; Rajan, B.S.

Distributed space-time coding is a mean of achieving diversity through cooperative communication in a wireless relay network. In this paper, we consider a transmission protocol that follows a two-stage model: transmission from source to relays in the first stage, followed by a simple relaying technique from relays to destination. The relays transmit a vector which is a transformation of the received vector by a relay-specific unitary transformation. We assume that the relays do not have any channel information, while the destination has only a partial-channel knowledge, by which we mean that destination knows only the relay-to-destination channel. For such a setup, we derive a Chernoff bound on the pairwise error probability and propose code design criteria. A second contribution is the differential encoding and decoding scheme for this setup, which is different from the existing ones. Furthermore, differential codes from cyclic division algebra are proposed that achieve full diversity. For our setup with two relays, a Generalized PSK code is shown to achieve full diversity, for which the decoding complexity is independent of code size

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 2 )