By Topic

CoopMAC: A Cooperative MAC for Wireless LANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pei Liu ; Dept. of Electr. Eng. & Comput. Eng., Polytech. Univ. Brooklyn, NY ; Zhifeng Tao ; Narayanan, S. ; Korakis, T.
more authors

Due to the broadcast nature of wireless signals, a wireless transmission intended for a particular destination station can be overheard by other neighboring stations. A focus of recent research activities in cooperative communications is to achieve spatial diversity gains by requiring these neighboring stations to retransmit the overheard information to the final destination. In this paper we demonstrate that such cooperation among stations in a wireless LAN (WLAN) can achieve both higher throughput and lower interference. We present the design for a medium access control protocol called CoopMAC, in which high data rate stations assist low data rate stations in their transmission by forwarding their traffic. In our proposed protocol, using the overheard transmissions, each low data rate node maintains a table, called a CoopTable, of potential helper nodes that can assist in its transmissions. During transmission, each low data rate node selects either direct transmission or transmission through a helper node in order to minimize the total transmission time. Using analysis, simulation and testbed experimentation, we quantify the increase in the total network throughput, and the reduction in delay, if such cooperative transmissions are utilized. The CoopMAC protocol is simple and backward compatible with the legacy 802.11 system. In this paper, we also demonstrate a reduction in the signal-to-interference ratio in a dense deployment of 802.11 access points, which in some cases is a more important consequence of cooperation

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 2 )