By Topic

Radio resource management games in wireless networks: an approach to bandwidth allocation and admission control for polling service in IEEE 802.16 [Radio Resource Management and Protocol Engineering for IEEE 802.16]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Niyato, D. ; TRLabs, Winnipeg, Man. ; Hossain, E.

Game theory is a mathematical tool developed to understand competitive situations in which rational decision makers interact to achieve their objectives. Game theory techniques have recently been applied to various engineering design problems in which the action of one component impacts (and perhaps conflicts with) that of any other component. In particular, game theory techniques have been successfully used for protocol design and optimization (e.g., radio resource management, power control) in wireless networks. In this article we present an overview of different game theory formulations. Then a survey on the game-theory-based resource management and admission control schemes in different wireless networks is presented, and several open research issues are outlined. To this end, we propose an adaptive bandwidth allocation and admission control scheme for polling service in an IEEE 802.16-based wireless metropolitan area network. A noncooperative game is formulated, and the solution of this game is determined by the Nash equilibrium for the amount of bandwidth offered to a new connection. The admission control policy ensures QoS for all connections in the system

Published in:

Wireless Communications, IEEE  (Volume:14 ,  Issue: 1 )