By Topic

Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yi Zheng ; Saint Cloud State Univ., MN ; Shigao Chen ; Wei Tan ; R. Kinnick
more authors

A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion generated by the ultrasound radiation force is expressed as extremely small oscillatory Doppler frequency shifts in the fast time (A-line) of ultrasound echoes, which are difficult to estimate. In slow time (repetitive ultrasound echoes) of the echoes, the motion also is presented as oscillatory phase shifts, from which the amplitude and phase of the harmonic motion can be estimated with the least mean squared error by Kalman filter. This technique can be used to estimate the traveling speed of a harmonic shear wave by tracking its phase changes during propagation. The shear wave propagation speed can be used to solve for the elasticity and viscosity of tissue as reported in our earlier study. Validation and in vitro experiments indicate that the method provides excellent estimations for very small (submicron) harmonic vibrations and has potential for noninvasive and quantitative stiffness measurements of tissues such as artery

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:54 ,  Issue: 2 )