By Topic

Illumination Invariant Face Recognition Using Near-Infrared Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, S.Z. ; Center for Biometrics & Security Res., Chinese Acad. of Sci., Beijing ; RuFeng Chu ; Shengcai Liao ; Lun Zhang

Most current face recognition systems are designed for indoor, cooperative-user applications. However, even in thus-constrained applications, most existing systems, academic and commercial, are compromised in accuracy by changes in environmental illumination. In this paper, we present a novel solution for illumination invariant face recognition for indoor, cooperative-user applications. First, we present an active near infrared (NIR) imaging system that is able to produce face images of good condition regardless of visible lights in the environment. Second, we show that the resulting face images encode intrinsic information of the face, subject only to a monotonic transform in the gray tone; based on this, we use local binary pattern (LBP) features to compensate for the monotonic transform, thus deriving an illumination invariant face representation. Then, we present methods for face recognition using NIR images; statistical learning algorithms are used to extract most discriminative features from a large pool of invariant LBP features and construct a highly accurate face matching engine. Finally, we present a system that is able to achieve accurate and fast face recognition in practice, in which a method is provided to deal with specular reflections of active NIR lights on eyeglasses, a critical issue in active NIR image-based face recognition. Extensive, comparative results are provided to evaluate the imaging hardware, the face and eye detection algorithms, and the face recognition algorithms and systems, with respect to various factors, including illumination, eyeglasses, time lapse, and ethnic groups

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 4 )