By Topic

Generating Cancelable Fingerprint Templates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key". The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 4 )