Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

From Template to Image: Reconstructing Fingerprints from Minutiae Points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Ross, A. ; Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV ; Shah, J. ; Jain, A.K.

Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line integral convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 4 )