By Topic

Statistical Performance Evaluation of Biometric Authentication Systems Using Random Effects Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

As biometric authentication systems become more prevalent, it is becoming increasingly important to evaluate their performance. This paper introduces a novel statistical method of performance evaluation for these systems. Given a database of authentication results from an existing system, the method uses a hierarchical random effects model, along with Bayesian inference techniques yielding posterior predictive distributions, to predict performance in terms of error rates using various explanatory variables. By incorporating explanatory variables as well as random effects, the method allows for prediction of error rates when the authentication system is applied to potentially larger and/or different groups of subjects than those originally documented in the database. We also extend the model to allow for prediction of the probability of a false alarm on a "watch-list" as a function of the list size. We consider application of our methodology to three different face authentication systems: a filter-based system, a Gaussian mixture model (GMM)-based system, and a system based on frequency domain representation of facial asymmetry

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 4 )