Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Virtual Craniofacial Reconstruction from Computed Tomography Image Sequences Exhibiting Multiple Fractures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chowdhury, A.S. ; Dept. of Comput. Sci., Georgia Univ., Athens, GA, USA ; Bhandarkar, S.M. ; Robinson, R.W. ; Yu, J.C.

A novel procedure for in-silico (virtual) craniofacial reconstruction of human mandibles with multiple fractures from a sequence of Computed Tomography (CT) images is presented. The problem is formulated as one of combinatorial pattern matching and solved in two stages. First, the opposable fracture surfaces are identified using a maximum weight graph matching algorithm where the fracture surfaces are modeled as the vertices of a weighted graph. The edge weights between pairs of vertices are treated as elements of a score matrix, whose values are a linear combination of (a) the Hausdorff distance, and (b) a score function based on fracture surface characteristics. Second, the pairs of opposable fracture surfaces identified in the first stage are actually registered using the Iterative Closest Point (ICP) algorithm enhanced with a graph theoretic improvisation. The correctness of the registration in the second stage is constantly monitored by volumetric matching of the reconstructed mandible with an intact mandible. Experimental results on simulated CT image sequences of broken human mandibles are presented.

Published in:

Image Processing, 2006 IEEE International Conference on

Date of Conference:

8-11 Oct. 2006