By Topic

Accurate Approximation of QAM Error Probability on Quasi-Static MIMO Channels and Its Application to Adaptive Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kharrat-Kammoun, F. ; Motorola Labs, Saint Aubin ; Fontenelle, S. ; Boutros, J.J.

An accurate approximation for the conditional error probability on quasi-static multiple-input multiple-output (MIMO) antenna channels is proposed. For a fixed channel matrix, it is possible to accurately predict the performance of quadrature amplitude modulations (QAM) transmitted over the MIMO channel in presence of additive white Gaussian noise. The tight approximation is based on a simple Union bound for the point error probability in the n-dimensional real space. Instead of making an exhaustive evaluation of all pairwise error probabilities (intractable in many cases), a Pohst or a Schnorr-Euchner lattice enumeration is used to limit the local theta series inside a finite radius sphere. The local theta series is derived from the original lattice theta series and the point position within the finite multidimensional QAM constellation. In particular, we take into account the number of constellation facets (hyperplanes) that are crossing the sphere center. As a direct application to the accurate approximation for the conditional error probability, we describe a new adaptive QAM modulation for quasi-static multiple antenna channels

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 3 )