By Topic

Stable and Effective Full-Wave PEEC Models by Full-Spectrum Convolution Macromodeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kochetov, S.V. ; Otto-von-Guericke Univ. of Magdeburg ; Wollenberg, G.

A novel technique for time domain partial element equivalent circuits (PEECs) modeling is presented. The PEEC method is a well-known numerical method for creating full-wave models of interconnection structures in the frequency and time domains, which are being used for modeling electromagnetic compatibility (EMC) problems. The time domain solutions by PEEC can show the so-called late-time instabilities. Several attempts to overcome this problem have been made in the literature. The cause for instability has been revealed, and a stable time domain model has been given, however, with a reduced computational efficiency. A stable full-wave PEEC model based on a convolution macromodeling with a faster computation time is developed and tested in this paper

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:49 ,  Issue: 1 )